STEREOISOMERISM OF QUATERNARY SALTS OF 5-NITROTETRAHYDRO-1,3-OXAZINES*

D. GÜRNE, T. URBAŃSKI, M. WITANOWSKI, B. KARNIEWSKA and L. STEFANIAK Institute of Organic Synthesis, Polish Academy of Sciences, Warszawa 10, Poland

(Received 27 January 1964)

Abstract—A number of diastereoisomeric pairs of quaternary salts of tetrahydro-1,3-oxazine derivatives have been prepared by the action of n-alkyl bromide (iodide) on 5-nitrotetrahydro-1,3-oxazines. The products are substituted at N_s by an axial n-alkyl different from that present in the n-alkyl bromide (iodide). Similar isomeric pairs with benzyl and methyl attached to N_s were obtained.

The conformational analysis was based on former work concerning the stereochemistry of 1,3-oxazine and the present NMR investigation.

A PREVIOUS study^{1,2} concerning the conformation of 5-nitrotetrahydro-1,3-oxazines (I) led to the conclusion that the ring

(with R = alkyl) exists in the chair form with the nitro group in the axial position. The substituent (R') at the nitrogen atom may be axial ($R' = CH_3$, C_2H_5 , $n-C_3H_7$, $n-C_4H_9$, benzyl) or equatorial ($R' = t-C_4H_9$, cyclohexyl), as inferred from dipole moments and NMR spectra.² It was also found that the conformation is fixed at room temperature.

The alkylation at the nitrogen to form quaternary salts should result in either of two possible diastereoisomeric forms, depending on which of the two alkyl groups is introduced in the second place. Actually, the pairs of products obtained in the reactions for various combinations of substituents, showed differences in melting points and decided mixed melting point depressions.

* Paper read at XIX-th International Congress of Pure and Applied Chemistry, London, July 1963 (Paper LXII of the series "Aliphatic Nitro Compounds").

¹ D. Gürne and T. Urbański, J. Chem. Soc. 1912 (1959).

² D. Gürne, T. Urbański, M. Witanowski and L. Stefaniak, Tetrahedron, Supl. 1964. In press.

TABLE 1		-C _s H ₁₁ nixed m.p.	115_117	/ 1 T				I		1		
	$-\mathbf{x}' + \mathbf{r}'\mathbf{x} + \mathbf{n}'\mathbf{x} + \mathbf{n}'\mathbf{n}'\mathbf{x} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'\mathbf{n}'\mathbf{n} + \mathbf{n}'\mathbf{n}'$	R = n m.p.	125-127	158-160	ł	I	I	I	I	I	I	
		n-C ₄ H, mixed m.p.	301-001	C7 1-77 1	1	l		l				
		R = m.p.	148-150	143–146	[Ι	Ι	Ι	1	Ι	I	I
		n-C _s H, mixed m.p.	152-155		134–138		[139-144		ſ	
		m.p. R	189-191	159-161	166–167	143–145	I	l	210-215	170-173	I	l
		: C ₂ H ₆ mixed m.p.	147–150		175-178		162-165		141-144			
	+ ` 4 	C2Hs mixed 1	1 7 1	1-/+1	1 321		1 (31	1-701		- -	1 140	-001
	R N-R +	$R = C_2 H_8$ m.p. mixed 1	185-186	149-150	180–181	191-193	181–182 152 1	184-186	161-162 141 1	172-174	178-179	179–180
	NO2 NO2 + +	$CH_3 \qquad R = C_2 H_5$ mixed m.p. mixed 1	185-186	127-144 149-150	180–181 1421 145 145 1		181-182	192-101 192-101-102-101-101-101-101-101-101-101-10	161-162	14.2-147 141-1 172-174	178-179	179–180
	NO2 R NO2 R N	$R = CH_{3} \qquad R = C_{4}H_{6}$ m.p. mixed m.p. mixed	163-164 185-186 120-144 185-186	149-150 149-150	183-185 180-181 142 145 145 175 1	186-188 191-193	190-192 181-182 153 1	165-167 184-186	164-166 161-162 145 140 141-1	14.0-147 14.0-147 14.1-1 166-167 172-174	178-179	
	NO2 NO2	$\mathbf{R} = \mathbf{C}\mathbf{H}_{3} \qquad \mathbf{R} = \mathbf{C}_{3}\mathbf{H}_{4}$ $\mathbf{X} m.p. \text{mixed} m.p. \text{mixed} \mathbf{M}_{2}$	I 163–164 185–186 130–144 185–186	I 161-163 149-150	Br 183–185 180–181 123 125 125 175 1	Br 186-188 191-193	Br 190-192 181-182	Br 165-167 184-186	Br 164-166 161-162	Br 166-167 172-174	Br 178-179 148 1	Br 179-180
	NO2 R NO2 R N	$\mathbf{R} = \mathbf{C}\mathbf{H}_{3} \qquad \mathbf{R} = \mathbf{C}_{3}\mathbf{H}_{5}$ $\mathbf{R}'' \qquad \mathbf{X} \qquad \text{mip.} \qquad \text{mixed} \qquad \text{m.p.} \qquad \text{mixed}$	C ₂ H ₅ I 163-164 185-186 137 147 147 147 147 147 147 147 147 147 14	CH ₈ I 161-163 149-150 1+/-1	C ₃ H ₅ Br 183-185 180-181 175 1	CH ₈ Br 186–188 191–193	n-C _a H, Br 190–192 181–182 142	CH ₃ Br 165-167 133-194 186	n-C ₄ H, Br 164-166 161-162 141	CH ₃ Br 166–167 172–174 1+1-1	CH ₂ C ₆ H ₆ Br — 178–179 148	CH _s Br 179-180

Direct proof of diastereoisomerism was afforded by NMR investigations of dilute solutions of the products in deuterium oxide. The NMR spectra of two such products are essentially the same except for small but regular differences in the chemical shifts (Fig. 1), indicating that only long-range shielding effects in different spatial arrangements are involved.

FIG. 1

The NMR signal of the alkyl introduced lies some 0.1 ppm downfields as compared with the case where the same alkyl was originally present on the nitrogen atom.

Consideration of the long-range shielding effects in the ring leads to some conclusions on the conformation of the quaternary salts. The well-known effect of the single bonds in a six-membered saturated ring in the chair conformation² should result in shifting the axial alkyl signal to higher fields relative to the equatorial alkyl. The nitro group is assumed to have a similar effect, based on the previous investigations^{1,2} indicating the axial nitro group and suggesting that the NO₂ plane is approximately perpendicular to the C_2 - C_5 axis. If the same conformation at C_5 is preserved in the quaternary salts, then the axial substituent at the nitrogen should lie in the positive shielding area (shift to higher fields), believed to extend conically above and below the NO₂ plane.³ (Fig. 2).

⁸ L. M. Jackman, Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry, Pergamon Press, London (1959).

Based on these assumptions, the NMR spectra of the compounds examined, suggest that the alkyl originally present in the ring is axial in the quaternary salt and the alkyl introduced is equatorial. Since all diastereoisomeric pairs were obtained

from the compounds with an axial substituent at the nitrogen $(R' = CH_3, C_2H_5, n-C_3H_7, n-C_4H_9, -CH_2C_6H_5)$, the postulated course of alkylation is as follows:

i.e. the attack occurs at the equatorial position assuming that no ring conversion takes place during quaternization.

Under similar experimental conditions, attempts at quaternization of the 5nitrotetrahydro-1,3-oxazines (I), when $R' = t-C_4H_9$ or cyclohexyl both in equatorial position as shown earlier,^{1,2} failed probably because of steric hindrance. The reaction with methyl bromide (I) yielded only traces of the corresponding hydrogen bromide salts.

In the analogous compound I (with axial $R' = CH_3$), quaternization with t-C₄H₉ bromide yielded the elimination products and the hydrobromide of I in quantitative yield.

Quaternary salts (II) differ from 5-nitrotetrahydro-1,3-oxazines (I) in that they are not subject to ring opening with dilute hydrochloric acid⁵⁻⁷ and splitting off a molecule of formaldehyde, which is typical for the compounds I.

It was formerly found that irradiation with ultraviolet light considerably increases the rate of hydrolysis and ring opening of derivatives of I. Under these conditions, quaternary salts (II) undergo complete decomposition and we were unable to isolate any definite compound from the tarry mixture.

- ⁵ E. L. Hirst, J. K. N. Jones, S. Minahan, F. W. Ochyński, A. T. Thomas and T. Urbański, J. Chem. Soc. 924 (1947).
- * Z. Eckstein, W. Sobótka and T. Urbański, Rocz. Chem. 30, 132 (1956).

⁴ J. Yamaguchi, Mol. Phys. 6, 105 (1963).

⁷ D. Gürne and T. Urbański, Rocz. Chem. 31, 855 (1957); 31, 869 (1957).

D	R′	R″	x	Formula	Required			Found			Yield	
ĸ					С	н	N	c	н	N	%	
	СН,	C,H,	I					29.8	5.5	9.1	90	
СНа	C.H.	CH.	т	C ₈ H ₁₇ N ₃ O ₃ I	30.3	5.3	8.8	30.6	5.4	0.0	87	
			T T					20.0	5.4	50	02	
C.H.	CH3	C ₁ H ₆	I	C.H.N.O.I	32.7	5.7	8.5	32.3	3.4	8.4	95	
	C₂H₅	CH,	I			• •		32.8	6.2	8∙4	86	
	CH,	C₃H₅	I					_		8∙4	85	
n-C₃H7	~ ~ ~	~		$C_{10}H_{21}N_{2}O_{3}I$	—		8∙1					
	C ₂ H ₅	CH3	I						—	8.5	92	
n-C.H.	CH3	C₃H₅	I	C.H.N.O.I	_	_	7.9		-	8-2	80	
11-04119	C₁H₅	CH3	I	C11111110101		_	1.0	·		7.9	90	
	CH,	C₃H₅	Ι							8.1	80	
n-C₅H11			_	C13H35N2O3I	_	—	7.5	i				
······	C₃H₅	СН,	1							7.9	75	
					Table 3							
				Formula		N			Formula		N	
ĸ	ĸ	Х	-	$R = CH_{s}$	Reqd.	Fou	nd	R = 0	C ₂ H ₅	Reqd.	Found	
CH _a	C₂H₅	Br			· · .	10.2					9.7	
			$C_BH_{17}N_sO_sBr$		10.3			$C_{9}H_{19}N_{2}$	H19N2O2Br			
C₂H₅	CH3	Br				10-	6				9.9	
CH,	n-C ₃ H ₇	Br	_			9.7					9.8	
~ C U	CH	n -	С	₉ H ₁₉ N ₂ O ₃ Br	9.8	10		C10H21N	O ₃ Br	9.4	~ •	
п-С ₃ П ₇	СП;	D[_				10.	1				9•4	
CH,	n-C ₄ H.	Br				9.	6				9-1	

TABLE 2

EXPERIMENTAL

9.4

9.9

C₁₁H₁₁N₂O₃Br

9.0

9.4

C₁₀H₂₁N₂O₂Br

n-C₄H,

CH_{*}

Br

1. Reaction of 3,5-dialkyltetrahydro-5-nitro-1,3-oxazine I with methyl or ethyl iodide. Compound I (2 g, 0.01 mole) was mixed with 0.02 mole methyl or ethyl iodide and the mixture left over night at room temp. The resulting product was filtered and recrystallized from methanol or ethanol. M.ps are given in Table 1, elementary analyses and yields in Table 2.

2. Reaction of I with methyl, ethyl, n-propyl and n-butyl bromide. The corresponding 1,3-oxazine I (2 g, 0.01 mole) dissolved in acetonitrile or anhydrous ethanol and mixed with 0.1 mole methyl bromide, in tightly stoppered flask was left at room temp for a few days. The resulting quaternary salt, obtained after evaporation of the solvent was recrystallized from anhydrous ethanol. The reaction of I with other alkyl bromides (used in excess) was carried out as follows: I (1 g) and 15 g alkyl bromide were boiled for 5-15 hr and the product crystallized from ethanol. The yields from 50-70%, and m.ps are given in Table 1, elementary analyses in Table 3. The identity of the quaternary salts obtained was determined by IR spectral analysis.

The NMR spectra were measured with Varian 4300-C Spectrometer at 60 Mc. The samples were prepared as dilute solutions in deuterium oxide. The spectra were calibrated by the usual side band technique, using the water peak as the internal reference.